Narrow your search

Library

FARO (6)

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

VIVES (6)

Vlaams Parlement (6)


Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (2)

2021 (2)

2020 (2)

Listing 1 - 6 of 6
Sort by

Book
Innovative Structural Applications of High Performance Concrete Materials in Sustainable Construction
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Concrete is the most widely utilized construction material in the world. Thus, any action intended to enhance the sustainability of the construction industry must consider the supply chain, production, distribution demolition and eventual disposal, landfilling or recycling of this composite material. High-performance concrete may be one of the most effective options to make the construction sector more sustainable. Experience proves that the use of recycled concrete aggregates, as well as the partial replacement of ordinary Portland cement with other supplementary cementitious materials or alternative binders, are generally accepted as the most realistic solutions to reduce the environmental impacts, leading to sufficiently high mechanical performances. In structural applications such as those concerning the seismic and energy retrofitting of existing buildings, the use of high-performance cementitious composites often represents the more cost-effective solution, which allows us to minimize the costs of the intervention and the environmental impact. Eventually, the challenge of enhancing sustainability by raising durability of concrete structures is particularly relevant in those applications where maintenance is particularly expensive and impactful, in terms of both direct intervention costs and indirect costs deriving from downtime. The present Special Issue aims at providing readers with the most recent research results on the aforementioned subjects and further foster a collaboration between the scientific community and the industrial sector on a common commitment towards sustainable concrete constructions.


Book
Architectural Structure
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue, “Architectural Structure,” aims to gather general advances in human-made constructions which simultaneously are driven by aesthetic and structural engineering considerations. This Special Issue brings together twelve contributions covering the following topics: analysis of architectural typologies; the study of the mechanical performance of structural materials, structural systems and components; and the proposal of techniques to evaluate the mechanical performance in existing structures and new construction techniques.

Keywords

recycled aggregate concrete --- block masonry --- compressive strength --- carbon emission --- stress–strain curves --- outrigger wall --- multiple openings --- deep beam --- stiffness --- shear strength --- tall building --- inverted multi tee --- prestressed concrete --- precast concrete --- structural performance --- flexural analysis --- self-compacting concrete --- non-destructive test methods --- ultrasonic pulse velocity test --- surface hardness test --- pull-out test --- maturity test --- within-test variability --- normal vibrated concrete --- concrete structures --- beams &amp --- girders --- torsion --- high-strength concrete --- prestressing --- traditional slabs --- ceramic-reinforced slabs --- shear response --- cyclic loading --- natural fiber-reinforced polymers --- NFRP --- computational design --- tailored fiber placement --- coreless filament winding --- rapid prototyping --- industry 4.0 --- lightweight structure --- Geopolymer --- Alkali activated --- tensile strength --- deformability --- experimental study --- analytical model --- reinforced concrete --- beams --- fly ash alkali activated --- bending --- thin-walled I-section --- continuous beam --- local buckling --- longitudinal stress variation --- design ultimate resistance of the cross-section --- Rudolf Steiner --- anthroposophy --- architecture --- Goetheanum --- double-steel-concrete composite shear walls --- axial and bending capacity --- failure characteristic --- n/a --- stress-strain curves


Book
Recent Advances in Theoretical and Computational Modeling of Composite Materials and Structures
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales.

Keywords

prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse–fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- Riemann–Liouville fractional derivative --- fractional Kelvin–Voigt model --- fractional Poynting–Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach --- n/a --- coarse-fine composite --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model


Book
Novel Approaches for Structural Health Monitoring
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of long-span bridges or wind farms, SHM has shaped the framework of many engineering fields. Given the current state of quantitative and principled methodologies, it is nowadays possible to rapidly and consistently evaluate the structural safety of industrial machines, modern concrete buildings, historical masonry complexes, etc., to test their capability and to serve their intended purpose. However, old unsolved problematics as well as new challenges exist. Furthermore, unprecedented conditions, such as stricter safety requirements and ageing civil infrastructure, pose new challenges for confrontation. Therefore, this Special Issue gathers the main contributions of academics and practitioners in civil, aerospace, and mechanical engineering to provide a common ground for structural health monitoring in dealing with old and new aspects of this ever-growing research field.

Keywords

dynamic characteristic --- GB-RAR --- super high-rise building --- displacement --- wheel flat --- real-time monitoring --- strain distribution characteristics --- multisensor array --- precise positioning --- noncontact remote sensing (NRS) --- optical flow algorithm --- structural health monitoring (SHM) --- uniaxial automatic cruise acquisition device --- noise robustness --- sensitivity analysis --- cross-modal strain energy --- damage detection --- subspace system identification --- data-driven stochastic subspace identification (SSI-DATA) --- covariance-driven stochastic subspace identification (SSI-COV) --- combined subspace system identification --- PRISMA --- vibration-based damage detection --- crack damage detection --- piezoelectric impedance --- piezoelectric admittance --- peak frequency --- Bayesian inference --- uncertainty quantification --- masonry structures --- seismic structural health monitoring --- Bouc–Wen model --- model calibration --- hysteretic system identification --- BOTDR --- CFRP sheet --- un-bonded position --- cover delamination --- interfacial de-bonding --- monitoring system --- pipeline --- health and structural integrity --- Particle Impact Damper --- adaptive-passive damping --- damping of vibrations --- experiments --- submerged floating tunnel --- deep neural network --- machine learning --- sensor optimization --- failure monitoring accuracy --- mooring line --- sigmoid function --- Adamax --- categorical cross-entropy --- bending test --- bridge --- “compression–softening” theory --- frequency --- inverse problem --- nondestructive testing (NDT) method --- prestressed concrete (PC) girder --- prestress force determination --- prestress loss --- vertical deflection measurement --- rail --- guided wave ultrasound --- broken rail detection --- rail diagnostics --- structural health monitoring --- non destructive testing --- shape sensing --- inverse Finite Element Method --- fiber optics --- full-field reconstruction --- Structural Health Monitoring --- extreme function theory --- non-destructive testing --- extreme value theory --- generalised extreme distribution --- n/a --- Bouc-Wen model --- "compression-softening" theory


Book
Technology and Management for Sustainable Buildings and Infrastructures
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A total of 30 articles have been published in this special issue, and it consists of 27 research papers, 2 technical notes, and 1 review paper. A total of 104 authors from 9 countries including Korea, Spain, Taiwan, USA, Finland, China, Slovenia, the Netherlands, and Germany participated in writing and submitting very excellent papers that were finally published after the review process had been conducted according to very strict standards. Among the published papers, 13 papers directly addressed words such as sustainable, life cycle assessment (LCA) and CO2, and 17 papers indirectly dealt with energy and CO2 reduction effects. Among the published papers, there are 6 papers dealing with construction technology, but a majority, 24 papers deal with management techniques. The authors of the published papers used various analysis techniques to obtain the suggested solutions for each topic. Listed by key techniques, various techniques such as Analytic Hierarchy Process (AHP), the Taguchi method, machine learning including Artificial Neural Networks (ANNs), Life Cycle Assessment (LCA), regression analysis, Strength–Weakness–Opportunity–Threat (SWOT), system dynamics, simulation and modeling, Building Information Model (BIM) with schedule, and graph and data analysis after experiments and observations are identified.

Keywords

circular foundation pit --- construction monitoring --- numerical simulation --- underground continuous wall --- reinforced concrete --- precast concrete double wall --- retaining wall --- lateral pressure --- lateral bending --- settlement --- artificial neural network --- liquefaction --- building information modeling --- drone --- LIDAR --- point cloud --- progress tracking --- school buildings --- system dynamics --- deterioration --- rehabilitation --- lifecycle cost analysis --- budget allocation --- natural disaster --- risk management --- accommodations --- operations and maintenance --- lifecycle cost --- disaster management --- inter-floor noise --- multi-dwelling houses --- smartphone application --- real-time monitoring system --- agent-based simulation --- space service quality --- efficient operation --- musculoskeletal disorders --- construction workers --- muscle stress --- standard Nordic questionnaire --- awkward posture --- simulation --- rebar work --- cutting waste --- minimization --- sustainable construction --- CO2 emission --- cutting stock problem --- 5D building information modeling --- agile project organization --- schedule/cost reliability --- degree of protection --- impact damage --- blast wave --- sustainable design consideration --- elasto-plastic design --- climate change --- typhoon --- catastrophe model --- typhoon vulnerability function --- risk analysis --- air permeability --- watertightness --- airtightness --- infiltration --- aluminium window frames --- natural hazard --- power system failure --- in-situ production --- environmental loads --- CO2 emission reduction --- life cycle assessment --- optimization model --- elevator --- noise --- vibration --- construction management --- high-rise residential building --- free-form building --- free-form concrete panel --- aluminum powder --- composite PCM mold --- social capital --- living environment --- living infrastructure --- soft infrastructure --- living social overhead capital --- inclusive growth --- inclusive city --- sustainable construction management --- tower crane accident reduction --- priority of tower crane accident causes --- sustainable development --- global sustainability --- scientific infrastructures --- Post-COVID-19 Scenario --- modeling --- building stock development --- mortality of building stock --- residential buildings --- public buildings --- commercial buildings --- paper sludge ash --- deinking sludge --- paper industry --- backfill material --- occupational safety and health expenses --- construction safety --- safety cost expenditures --- apartment construction --- ground beam --- LCA --- prefabrication --- vibro-pile --- eurocode --- precast prestressed concrete pile --- continuous flight auger pile --- eco-costs --- economic --- LCA (life cycle assessment) --- earth-retaining wall --- excavation --- environment load --- environment cost --- bid price volatility --- uncertainty in bid documents --- pre-bid clarification document --- machine learning (ML), classification model --- public project --- sustainable project management --- stone sludge --- lightweight aggregates --- controlled low-strength materials --- Taguchi method --- rebar cutting waste --- optimization --- structural work --- systematic literature review --- management performance evaluation indicators (MAPEIs) for small construction firms --- AHP --- key performance indicators (KPIs) --- corporation management --- small construction firms --- n/a


Book
Fatigue and Fracture of Non-metallic Materials and Structures
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches.

Keywords

Ethylene-propylene diene monomer rubber EPDM --- grommet --- physical properties --- optimization of shape design --- reliability of rocks --- fatigue load --- strain energy --- red sandstone --- distribution of strain energy --- indices --- multi-scale simulation --- fatigue loading --- road bridge decks --- stagnant water --- fracture toughness --- blast furnace slag --- particle size --- compressive strength --- concrete --- concrete cracking --- crack patterns --- carbon fiber-reinforced polymers—CFRP --- RC strengthening (in bending and shear) --- RC beams --- soft materials --- polymers --- strain rate --- defect tolerance --- digital image correlation --- stress concentrators --- notch blunting --- lightning strike --- composite reinforced panel --- blow-off impulse --- electric-thermal coupling --- boundary effect --- size effect --- tensile strength --- physical modelling test --- rock structure --- fracture --- deformation --- mining --- neutral axis --- self-healing --- successive strain gauge --- flexural test --- bridge decks --- pseudo-cracking method --- data assimilation --- triaxial compression test --- sandstone --- rock mechanics --- rock fracture --- energy evolution --- rock-like material --- crack propagation --- discrete element --- strain rate tensor --- velocity field --- jointed rock --- uniaxial tension loading --- numerical analysis --- discrete element method --- strata structural behavior --- numerical simulation --- tension weakening --- fractures --- goaf consolidation --- fatigue life --- modified asphalt mixture --- four-point bending beam fatigue test --- two-point trapezoidal beam fatigue test --- overlay tester --- embedment --- shale rock --- proppant pack --- fracture width --- fly ash --- fineness --- fracture energy --- critical stress intensity factor --- assessment --- bridge evaluation --- compressive membrane action --- concrete bridges --- fatigue --- fatigue assessment --- live loads --- prestressed concrete --- punching shear --- scale model --- CFRP --- Low Velocity Impacts --- Cohesive Zone Model (CZM) --- Finite Element Analysis (FEA) --- VUMAT --- inter-laminar damage --- intra-laminar damage --- chemical grouting --- flowing water --- water plugging rate --- joint roughness coefficient --- damage model --- mode-II microcracks --- thermodynamics --- reinforced concrete beam --- impact and quasi-static loading --- retrofitting --- mineral grain shape --- particle flow code --- uniaxial compression simulation --- rock mechanical property --- mesostructure --- finite element analysis --- cohesive zone model --- high performance concrete --- fibre-reinforced high performance concrete --- compressive stress --- compressive modulus of elasticity --- maximum compressive strain --- tension --- pressure-tension apparatus --- nondestructive testing --- ultrasonic pulse velocity --- ABAQUS FEA --- high-temperature wedge splitting test --- fracture parameters --- reducing condition --- carbon-containing refractories --- strain-softening --- failure probability --- diamond composite --- material failure characteristics --- reliability --- rock cutting picks --- civil engineering --- fiber-reinforced composite laminate --- multi-directional laminate --- delamination --- elastic interface --- energy release rate --- mixed-mode fracture --- enhanced PG-NEM --- functionally graded material (FGM) --- stress intensity factor (SIF) --- modified interaction integral --- metallic glasses --- shear bands --- mechanical properties --- fracture mechanism --- small wind turbine --- stall regulation --- pitch regulation --- aeroelastic simulation --- n/a --- Fatigue --- Fracture mechanics --- Structural integrity --- Polymers --- Composites --- Ceramics --- Concrete --- Rock --- Soft matter --- Advanced materials. --- carbon fiber-reinforced polymers-CFRP

Listing 1 - 6 of 6
Sort by